*แจ้งวันหยุด* ทางบริษัทจะปิดทำการในวันที่ 6 พ.ค. 67 และวันที่ 22 พ.ค. 67 เพราะฉะนั้นออเดอร์จะทำการจัดส่งอีกครั้งในวันทำการถัดไป
Maze Pro Passive Aluminum Case Stressberry Test

Maze Pro Passive Aluminum Case Stressberry Test

Disclaimer:

This guide is provided for information and as it is. Cytron Technologies will not be responsible for any damage or data lost during the installation process. Do backup your microSD card if you have any concern.

Hardware:

 

logo

 

First of all, why subject your Raspberry Pi to this level of stress? In the case of Raspberry Pi 4, the A72 CPU is so powerful that it can overheat if it doesn't have enough cooling. This results with the CPU being governed (slowed down) to reduce the electrical energy being consumed, and in turn, reducing heat generation. The RPi 3B+ and predecessors could also overheat, however, it was less of a problem for the majority of use cases. A quick stress test, in this case, will reveal if your Raspberry Pi 4 can run at full CPU-load in its case/environment without overheating and not slowing down.

The goal of this tutorial is to create a chart which depicts:

  • A stabilization period at the beginning
  • A period of time for full-load CPU
  • View the CPU temperature
  • View the CPU speed (to witness if the CPU is being governed, or not)

There are a million ways to cool down your Raspberry Pi: Small heat sinks, specific cases, and some extreme DIY solutions. Stressberry is a package for testing the core temperature under different loads, and it produces nice plots which can easily be compared.

The run lets the CPU idle for a bit, then stresses it with maximum load for 30 minutes, and lets it cool down afterwards. The entire process takes around 45 minutes. The resulting data is displayed to a screen or, if specified, written to a PNG file.

 

 

Step 1: Enclosure installation steps

 

Open the top cover and paste two pieces of thermal paste at the designated place on the case.

photo 2021 10 07 08 33 37

Connect wires from the case to Raspberry Pi as the picture shows below.

photo 2021 10 07 08 33 23

Insert the Raspberry Pi board into the case and fix the bottom cover to the case.

photo 2021 10 07 08 33 30

Mount the screws and attach footer rubber at each edge of the case.

photo 2021 10 07 08 33 33

The Raspberry Pi is now can be power ON. Do not forget to press the power button to turn ON your Raspberry Pi.

photo 2021 09 30 15 12 04

 

 

Step 2: Result for the stress test

I have overclocked and ran the stress test on the Maze Pro Passive Cooling Case to observe how great the enclosure dissipates heat from the Raspberry Pi 4. The chart below shows the stressberry graph for the Maze Pro Passive Cooling Case.

8

From the chart, we can see that the Raspberry Pi can dissipate heat better with the case. From my observations:

Bare board – the CPU is doing its best to deal with the generated heat. An interesting compromise that appears to be keeping the CPU well below 80 degrees Celsius.

Maze Pro Passive Cooling Aluminum Case– this type of enclosure applies a passive cooling mechanism and of course it is better, than bare board in dissipating the heat. The heat from the CPU is absorbed and dissipated through a wide surface area. Eventhough this case just applies passsive cooling mechanism, it surprisingly can work better than some enclosures with fan. It also comes with power button function to make it easy for the shutdown process.

Overclock test – the Raspberry pi is overclocked to observe how far the clock frequency can be increased while maintaining the CPU temperature below 80 degree Celsius. The Raspberry Pi can be overclocked to maximum 2.1 GHz with this case.

 

Now you can see that enclosure for Raspberry Pi 4 is really important in dissipating the CPU heat. Interested in having this type of enclosure for your Raspberry Pi?

Let’s get the enclosure at our Cytron product webpage ?.

 

 

Kindly refer this tutorial for the Stressberry test.

tutorial/stressberry-test-on-raspberry-pi-4